Predictive Analysis of Flood Risk Factors Based on a Machine Learning Approach: Comparative Study of SVM and XGBoost Algorithms

Penulis

  • Surya Darma Universitas Potensi Utama Penulis
  • Ahmad Jihad Al Fayed Universitas Pembangunan Panca Budi Penulis
  • Surya Maruli P Pardede Universitas Pembangunan Panca Budi Penulis
  • Muhammad Hizbul Aqsha Universitas Pembangunan Panca Budi Penulis
  • Muhammad Syahputra Novelan Universitas Pembangunan Panca Budi Penulis

Kata Kunci:

Flood risk, Machine learning, Prediction, Support vector machine, Xgboost

Abstrak

Flood events in Indonesia continue to increase in frequency and impact due to high rainfall variability, land-use change, and complex hydrological conditions. Accurate predictive modeling is therefore essential to support flood risk assessment and mitigation planning. This study evaluates the predictive performance of two supervised machine learning algorithms, Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost), for flood risk classification. The analysis is conducted using a publicly available dataset comprising 500 samples that represent multiple environmental and spatial factors related to flood occurrence. Data preprocessing includes cleaning, normalization, and feature consistency adjustment prior to model implementation. Both algorithms are trained and tested using the same dataset configuration to ensure objective comparison. Model performance is assessed using accuracy, precision, recall, and F1-score metrics. Experimental results indicate that XGBoost achieves higher accuracy and precision, demonstrating stronger capability in reducing false-positive predictions, while SVM shows relatively higher recall, reflecting better sensitivity in identifying flood-prone cases. Overall, XGBoost provides more reliable predictive performance for flood risk modeling on the dataset used. The findings confirm the effectiveness of machine learning-based approaches for flood risk prediction and highlight the importance of algorithm selection in disaster risk analysis.

Referensi

S. Choosumrong, K. Piyathamrongchai, R. Hataitara, U. Soteyome, N. Konkong, R. Chalongsuppunyooet al., "Development of an IoT-Based Flood Monitoring System Integrated with GIS for Lowland Agricultural Areas",, 2025. https://doi.org/10.20944/preprints202506.1403.v1

M. Damayanti, S. Wahyuningtyas, D. Balistyadhana, A. Hapsari, A. Shammah, N. Yusaet al., "The IoT-Based Early Warning System for Detecting High Tide Floods (ROB-EWS) in Tambak Lorok, Semarang Indonesia", Journal of Geography Environment and Earth Science International, vol. 28, no. 10, p. 13-24, 2024. https://doi.org/10.9734/jgeesi/2024/v28i10822

H. Yuliandoko, S. Subono, V. Wardhani, S. Pramono, & P. Suwindarto, "Design of Flood Warning System Based IoT and Water Characteristics", Telkomnika (Telecommunication Computing Electronics and Control), vol. 16, no. 5, p. 2101, 2018. https://doi.org/10.12928/telkomnika.v16i5.7636

M. Farabi and A. Sintawati, "Flood early warning system at Jakarta dam using internet of things (IoT)-based real-time fishbone method to support industrial revolution 4.0", Journal of Soft Computing Exploration, vol. 5, no. 2, p. 99-106, 2024. https://doi.org/10.52465/joscex.v5i2.293

S. Choosumrong, K. Piyathamrongchai, R. Hataitara, U. Soteyome, N. Konkong, R. Chalongsuppunyooet al., "Development of an IoT-Based Flood Monitoring System Integrated with GIS for Lowland Agricultural Areas",, 2025. https://doi.org/10.20944/preprints202506.1403.v1

D. Perera, J. Agnihotri, O. Seidou, & R. Djalante, "Identifying societal challenges in flood early warning systems", International Journal of Disaster Risk Reduction, vol. 51, p. 101794, 2020. https://doi.org/10.1016/j.ijdrr.2020.101794

F. Razak, M. S. Novelan, dan Arpan, “Perancangan sistem pendeteksi banjir dan sistem peringatan dini berbasis bot Telegram,” Ensiklopedia Education Review, vol. 4, no. 1, Apr. 2022. [Online]. Tersedia: http://jurnal.ensiklopediaku.org

X. Wang and H. Xie, "A Review on Applications of Remote Sensing and Geographic Information Systems (GIS) in Water Resources and Flood Risk Management", Water, vol. 10, no. 5, p. 608, 2018. https://doi.org/10.3390/w10050608

N. Rehman, U. Zada, & K. Haleem, "Quantifying the Influences of Land Use and Rainfall Dynamics on Probable Flood Hazard Zoning", Nust Journal of Engineering Sciences, vol. 16, no. 1, p. 54-68, 2023. https://doi.org/10.24949/njes.v16i1.739

M. Afifi, R. Wahaab, A. Khalifa, I. Moukhtar, & E. Elalfy, "Assessment of Anticipatory Approach Using the Integration of GIS, and Remote Sensing Techniques for Flood Management in Alexandria City, Egypt", Civil Engineering and Architecture, vol. 11, no. 3, p. 1439-1453, 2023. https://doi.org/10.13189/cea.2023.110326

A. Elaji and W. Ji, "Urban Runoff Simulation: How Do Land Use/Cover Change Patterning and Geospatial Data Quality Impact Model Outcome?", Water, vol. 12, no. 10, p. 2715, 2020. https://doi.org/10.3390/w12102715

M. Jayantari, A. Yesaya, I. P., & G. Eryani, "Flood Hazzard Assessmentand Mapping in Yeh Ho Watershed Using Geographic Information System (GIS)", The International Journal of Engineering and Science, vol. 13, no. 11, p. 75-83, 2024. https://doi.org/10.9790/1813-13117583

H. Rizeei, B. Pradhan, & M. Saharkhiz, "An integrated fluvial and flash pluvial model using 2D high-resolution sub-grid and particle swarm optimization-based random forest approaches in GIS", Complex & Intelligent Systems, vol. 5, no. 3, p. 283-302, 2018. https://doi.org/10.1007/s40747-018-0078-8

I. Safitri, Y. Ruhiat, & A. Saefullah, "Analysis of Flood Vulnerability Levels Using Overlay Method With System-Based Scoring Geographical Information (Case Study: District Tangerang)", Newton-Maxwell Journal of Physics, vol. 4, no. 2, p. 56-64, 2023. https://doi.org/10.33369/nmj.v4i2.30354

W. Widyatmanti, A. Puti, G. Priatmadja, H. Raihan, S. Sholihah, R. Hanifet al., "Flood Hazard Mapping in Cimandiri Watershed using Fuzzy Logic Method Based on Multi-Source Geospatial Datasets", Iop Conference Series Earth and Environmental Science, vol. 1406, no. 1, p. 012019, 2024. https://doi.org/10.1088/1755-1315/1406/1/012019

A. Chinedu, N. Ezebube, S. Uchegbu, & V. Ozorme, "Integrated assessment of flood susceptibility and exposure rate in the lower Niger Basin, Onitsha, Southeastern Nigeria", Frontiers in Earth Science, vol. 12, 2024. https://doi.org/10.3389/feart.2024.1394256

C. Meng and H. Jin, "A Comparison of Machine Learning Models for Predicting Flood Susceptibility Based on the Enhanced NHAND Method", Sustainability, vol. 15, no. 20, p. 14928, 2023. https://doi.org/10.3390/su152014928

Z. Li, J. Tian, Y. Zhu, D. Chen, Q. Ji, & D. Sun, "A Study on Flood Susceptibility Mapping in the Poyang Lake Basin Based on Machine Learning Model Comparison and SHapley Additive exPlanations Interpretation", Water, vol. 17, no. 20, p. 2955, 2025. https://doi.org/10.3390/w17202955

H. D. Nguyen, D. K. Dang, Q. T. Bui, and A. I. Petrisor, “Multi-hazard assessment using machine learning and remote sensing in the North Central region of Vietnam,” Transactions in GIS, vol. 27, no. 5, pp. 1614–1640, 2023, doi: 10.1111/tgis.13091.

S. Janizadeh, M. Avand, A. Jaafari, T. V. Phong, M. Bayat, E. Ahmadisharaf, I. Prakash, B. T. Pham, and S. Lee, “Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh watershed, Iran,” Sustainability, vol. 11, no. 19, p. 5426, Sep. 2019, doi: 10.3390/su11195426.

M. Shirmohammadi, S. Pirasteh, W. Li, and D. Mafi-Gholami, “Flood risk mapping and performance efficiency evaluation of machine learning algorithms: Best practice in northern Iran,” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XLVIII-G, pp. 1347–1352, 2025, doi: 10.5194/isprs-archives-XLVIII-G-2025-1347-2025.

A. Yaseen, J. Lu, and X. Chen, “Flood susceptibility mapping in an arid region of Pakistan through ensemble machine learning model,” Stoch. Environ. Res. Risk Assess., vol. 36, pp. 3041–3061, 2022, doi: 10.1007/s00477-022-02179-1.

S. T. Seydi, Y. Kanani-Sadat, M. Hasanlou, R. Sahraei, J. Chanussot, and M. Amani, “Comparison of machine learning algorithms for flood susceptibility mapping,” Remote Sensing, vol. 15, no. 1, p. 192, Dec. 2022, doi: 10.3390/rs15010192.

A. Salvati, A. M. Nia, A. Salajegheh, K. Ghaderi, D. T. Asl, N. Al-Ansari, F. Solaimani, and J. J. Clague, “Flood susceptibility mapping using support vector regression and hyper-parameter optimization,” J. Flood Risk Management, vol. 16, no. 4, p. e12920, 2023, doi:10.1111/jfr3.12920.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995, doi: 10.1007/BF00994018.

B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2002.

A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, Aug. 2004, doi: 10.1023/B:STCO.0000035301.49549.88.

Y. B. Dibike, S. Velickov, D. P. Solomatine, and M. B. Abbott, “Model induction with support vector machines: Introduction and applications,” Journal of Computing in Civil Engineering, vol. 15, no. 3, pp. 208–216, 2001, doi: 10.1061/(ASCE)0887-3801(2001)15:3(208).

H. Shafizadeh-Moghadam, A. Valavi, M. Shahabi, T. Chapi, and B. Pradhan, “Novel forecasting approaches using machine learning and statistical models for flood susceptibility mapping,” Journal of Hydrology, vol. 556, pp. 191–206, 2018, doi: 10.1016/j.jhydrol.2017.11.022.

M. S. Tehrany, B. Pradhan, and M. N. Jebur, “Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS,” Journal of Hydrology, vol. 512, pp. 332–343, 2014, doi: 10.1016/j.jhydrol.2014.02.033.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 2016, pp. 785–794, doi: 10.1145/2939672.2939785.

A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Frontiers in Neurorobotics, vol. 7, p. 21, 2013, doi: 10.3389/fnbot.2013.00021.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. New York, NY, USA: Springer, 2009.

H. Ren, B. Pang, P. Bai, G. Zhao, S. Liu, Y. Liu, and M. Li, “Flood susceptibility assessment with random sampling strategy in ensemble learning: Random Forest and XGBoost,” Remote Sens., vol. 16, no. 2, p. 320, Jan. 2024, doi: 10.3390/rs16020320.

Diterbitkan

2026-02-09

Cara Mengutip

Darma, S., Al Fayed, A. J., P Pardede, S. M., Aqsha, M. H., & Novelan, M. S. (2026). Predictive Analysis of Flood Risk Factors Based on a Machine Learning Approach: Comparative Study of SVM and XGBoost Algorithms. Journal of Technology and Computer, 3(1), 24-33. https://journal.technolabs.co.id/index.php/jotechcom/article/view/94