Comparison of Random Forest and Naïve Bayes Classifier Methods for Monkeypox Classification
Kata Kunci:
Classification, Data mining, Monkey pox, Naive bayes, Random forestAbstrak
Monkey Pox is a disease caused by a virus with the genus orthopoxvirus that can infect humans. The initial symptoms of this disease are the appearance of lumps due to swollen lymph nodes, muscle pain, fever, feeling tired and weak. Although similar to Chickenpox, Monkey Pox is clinically difficult to distinguish from other smallpox diseases. This study aims to classify Monkey Pox disease using the "Monkey-Pox PATIENTS Dataset". Classification of Monkey Pox disease is done using Random Forest and Naïve Bayes methods. Random Forest produces higher accuracy than Naïve Bayes in classifying Monkey Pox disease, which is 69.24% with a k-fold value of 5 and the number of trees 64 using an unbalanced dataset with 6 attributes. While Naïve Bayes produces an accuracy of 68.56% using a dataset without balancing with 8 attributes (k-fold=5, kernel=Gaussian) and 9 attributes (k-fold=3 and 10, kernel=Gaussian).
Referensi
Aldi, F., Nozomi, I., Sentosa, R. B., & Junaidi, A. (2023). Machine Learning to Identify Monkey Pox Disease. Sinkron, 8(3), 1335–1347. https://doi.org/10.33395/sinkron.v8i3.12524
Arwan, Ardina, V., Ariana, L. R., Samuel, F., Ramdani, D., Aditya, & Sukmana, E. A. (2018, June 8). Synthetic Minority Over-sampling Technique (SMOTE) Algorithm For Handling Imbalanced Data. MTI - Master Program in Information Technology.
Bawono, B., & Wasono, R. (2019). Seminar Nasional Edusaintek PERBANDINGAN METODE RANDOM FOREST DAN NAÏVE BAYES UNTUK KLASIFIKASI DEBITUR BERDASARKAN KUALITAS KREDIT. http://prosiding.unimus.ac.id
Breiman, L. (2001). Random Forest. Machine Learning, 45(1), 5–32.
Han, J., Kamber, M., & Pei, J. (2011). Data Mining. Concepts and Techniques, 3rd Edition (The Morgan Kaufmann Series in Data Management Systems).
Husna, F., & Wicaksono, A. (2020). INFORMASI TENTANG PENYAKIT INFEKSI CACAR MONYET (Monkeypox) YANG MENYERANG MANUSIA (Vol. 18, Issue 1).
Imran, B., Hambali, Subki, A., Zaeniah, Yani, A., & Muhammad, R. A. (2022). DATA MINING USING RANDOM FOREST, NAÏVE BAYES, AND ADABOOST MODELS FOR PREDICTION AND CLASSIFICATION OF BENIGN AND MALIGNANT BREAST CANCER.
Kandi, V., Pal, M., & Mengstie, F. (2017). Epidemiology, Diagnosis, and Control of Monkeypox Disease: A comprehensive Review. American Journal of Infectious Diseases and Microbiology, 5(2), 94–99. https://doi.org/10.12691/ajidm-5-2-4
Kusrini, & Luthfi, E. T. (2009). Algoritma Data Mining (T. A. Prabawati, Ed.; 1st ed.).
Lorena, S., Ginting, B., Pasya, R., & Abstrak, T. (2013). TEKNIK DATA MINING MENGGUNAKAN METODE BAYES Oleh. https://doi.org/https://doi.org/10.34010/jati.v3i2.794
Polamuri, S. (2017, May). HOW THE RANDOM FOREST ALGORITHM WORKS IN MACHINE LEARNING. Dataaspirant.
Rohani, A., Taki, M., & Abdollhapour, M. (2017). A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting. Renewable Energy, 115. https://doi.org/10.1016/j.renene.2017.08.061
Saleh, A. (2015). Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga. Citec Journal, 2(3), 7–17.V.
Samosir, A., Hasibuan, M., Justino, W. E., & Hariyono, T. (2021). Komparasi Algoritma Random Forest, Naïve Bayes dan K-Nearest Neighbor Dalam klasifikasi Data Penyakit Jantung. 214–222.
Taufan Asri Zaen, M., Julkarnain, M., & Hamdani, F. (2021). Application of Information Gain to Select Attributes in Improving Naive Bayes Accuracy in Predicting Customer’s Payment Capability. JISA (Jurnal Informatika Dan Sains), 04(02), 155– 163.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2026 Journal of Technology and Computer

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.











