Kitchen Ordering Application with ANN Backpropagation for Order Prediction

Penulis

  • Muhammad Said Idris Universitas Harapan Medan Penulis
  • Rismayanti Rismayanti Universitas Harapan Medan Penulis

Kata Kunci:

Artificial Neural Network, Backpropagation Algorithm, Culinary Industry, Kitchen Inventory Management, Order Prediction

Abstrak

Raw material inventory management is an important aspect of kitchen operations, especially in the culinary industry, which depends on the timely and efficient availability of stock. Inaccurate raw material ordering can result in excess costs, stockpiling, or shortages that affect service quality. Therefore, an intelligent system is needed that can accurately and automatically predict raw material requirements. This study aims to design a kitchen raw material application using the Artificial Neural Network (ANN) method and the Backpropagation algorithm as a method for automatically predicting order quantities. By using historical raw material data as input to train the model, analysis data obtained from the mean squared error, mean absolute error, and R squared error can be used to study demand patterns over time. The test results show that the ANN model with the backpropagation algorithm is capable of providing fairly accurate predictions of kitchen raw material requirements. The application created can also simplify the raw material ordering process by providing recommendations for effective purchase quantities. Thus, this system can help manage inventory more efficiently and based on data.

Referensi

J. Juwita and F. Rahmiyatun, “Penerapan Metode Economic Order Quantity (EOQ) Dan Reorder Point (ROP) Pada Pengendalian Persediaan Bahan Baku Di UMKM Dapur Bunga Berbintang,” J. Maneksi, vol. 12, no. 4, pp. 818–827, 2023, doi: 10.31959/jm.v12i4.1833.

F. P. Hanifi, S. Syafriandi, and N. Amalita, “Artificial Neural Network Model for Forecasting Inflation Rate in Indonesia Using Backpropagation Algorithm,” 2025.

R. Gusriva and Y. M. Putra, “Model Prediksi Kerusakan Sepeda Motor Matic Menggunakan Jaringan Saraf Tiruan dan Metode Hebb ’ s Rule,” vol. 6, no. 2, pp. 585–592, 2025.

F. Nailah, D. I. Larasati, S. Siswanto, and A. Kalondeng, “Optimasi Metode Jaringan Saraf Tiruan Backpropagation Untuk Peramalan Curah Hujan Bulanan Di Kota Denpasar,” MATHunesa J. Ilm. Mat., vol. 12, no. 1, pp. 134–140, 2024, doi: 10.26740/mathunesa.v12n1.p134-140.

V. I. Sunarko, D. L. S. Dimara, P. S. E. Siagian, D. Manalu, and F. T. Anggraeny, “Implementasi K-Fold Dalam Prediksi Hasil Produksi Agrikultur Pada Algoritma K-Nearest Neighbor (KNN),” INTEGER J. Inf. Technol., vol. 10, no. 1, pp. 10–16, 2025, doi: 10.31284/j.integer.2024.v10i1.6892.

A. P. Sheriva, C. Rahmadhini, E. Angelia, G. Perwinta, and B. Ginting, “Implementasi Sistem ERP ( Enterprise Resource Planning ) Dalam Manajemen Persediaan di PT Indofood Sukses Makmur,” vol. 2, no. 2, pp. 83–92, 2024.

M. R. Qisthiano and A. O. Pratiwi, “MENGGUNAKAN ALGORITMA SOBEL DAN PREWITT,” vol. 13, no. 2, pp. 1115–1122, 2025.

N. T. Khair, I. Afrianty, F. Syafria, E. Budianita, and S. K. Gusti, “Penerapan Information Gain Untuk Seleksi Fitur Pada Klasifikasi Jenis Kelamin Tulang Tengkorak Menggunakan Backpropagation,” vol. 5, no. 4, pp. 666–678, 2025, doi: 10.47065/bulletincsr.v5i4.637.

N. Tri et al., Deep Learning : Teori , Algoritma , dan Aplikasi, no. March. 2025.

R. 2020 Mirfiza, “Implementasi Backpropagation Berdasarkan Particle Swarm Optimization Untuk Memprediksi Jumlah Penumpang Kereta Api,” p. 91, 2020.

Diterbitkan

2025-11-26

Cara Mengutip

Idris, M. S., & Rismayanti, R. (2025). Kitchen Ordering Application with ANN Backpropagation for Order Prediction. Journal of Technology and Computer, 2(4), 193-199. https://journal.technolabs.co.id/index.php/jotechcom/article/view/68

Artikel paling banyak dibaca berdasarkan penulis yang sama

1 2 3 4 5 6 7 8 > >>