Text Classification Using TF-IDF and Naïve Bayes: Case Study of MyXL App User Review Data
Kata Kunci:
Text classification, TF-IDF, Naïve Bayes, MyXL, User reviewAbstrak
The MyXL application, developed by leading Indonesian operator XL Axiata, allows customers to independently manage their telecommunication services. However, a significant volume of negative user reviews necessitates a deeper analysis of user sentiment. This research classifies MyXL app reviews using the TF-IDF (Term Frequency-Inverse Document Frequency) method for feature extraction and the Naïve Bayes algorithm for sentiment classification, implemented via a Python-based GUI. The study's objective is to categorize reviews into positive, negative, and neutral sentiments. A dataset of 1000 user reviews from Kaggle underwent comprehensive preprocessing—including text cleaning, normalization, tokenization, stopword removal, and stemming—before conversion into a numerical representation using TF-IDF. The classification model, built with the Naïve Bayes algorithm, was evaluated using accuracy, precision, recall, and F1-score metrics. The model achieved an accuracy of 61.5%. This finding demonstrates that combining TF-IDF and Naïve Bayes is effective for classifying sentiment in Indonesian text reviews, particularly within the mobile app domain. Furthermore, the methodology shows clear potential for development into a large-scale and automated user opinion analysis system.
Referensi
Y. Asri, W. N. Suliyanti, D. Kuswardani, and M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes Dalam Menganalisis Sentimen Data Ulasan PLN Mobile,” Petir, vol. 15, no. 2, pp. 264–275, 2022, doi: 10.33322/petir.v15i2.1733.
H. Bugis, “Metode Naïve Bayes Untuk Memprediksi Penyakit Stroke,” Jurnal Siskom-Kb (Sistem Komputer Dan Kecerdasan Buatan), vol. 6, no. 1, pp. 8–14, 2022, doi: 10.47970/siskom-kb.v6i1.317.
A. Putri, S. Chiang, and A. Ridho, “MATLAB GUI Application for Processing the Remote Sensing Images,” Jurnal Teknologi Informasi, vol. 2, no. 1, p. 9, 2023, doi: 10.35308/jti.v2i1.7532.
M. H. Rifki, Y. R. W. Utami, and P. Harsadi, “Text Mining Untuk Analisis Sentimen Review Film Menggunakan Algoritma Naïve Bayes,” 2024.
R. Kosasih and A. Alberto, “Sentiment analysis of game product on shopee using the TF-IDF method and naive bayes classifier,” ILKOM Jurnal Ilmiah, vol. 13, no. 2, pp. 101–109, Aug. 2021, doi: 10.33096/ilkom.v13i2.721.101-109.
M. Alfarizi, M. Rizqy, R. I. Ghufroni, D. Fathurahman, R. D. Saputra, and F. Kurniawan, “Analisis Sentimen Persepsi Publik Terhadap Kasus Bullying Siswa Cilacap Menggunakan Pendekatan Machine Learning,” 2023. [Online]. Available: https://journal-computing.org/index.php/journal-ita/index
T. M. Sugandi, Martanto, and U. Hayati, “Analisis Sentimen Komentar Pengguna Youtube terhadap Kebijakan Baru Badan Penyelenggara Jaminan Kesehatan Sosial Menggunakan Naïve Bayes,” 2024.
C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 422, Apr. 2021, doi: 10.30865/mib.v5i2.2845.
A. N. P. Quina et al., “Analisis Sentimen terhadap Produk Skin Game di Forum Review Female Daily Menggunakan Metode Multinomial Naïve Bayes dan TF-IDF,” JURNAL INFORMATIK Edisi ke, vol. 18, p. 2022, 2022.
S. M. Sadid, J. C. Young, and A. Rusli, “Spam Filtering on User Feedback via Text Classification using Multinomial Naïve Bayes and TF-IDF,” Ultimatics : Jurnal Teknik Informatika, vol. 13, no. 2, p. 108, 2021.
N. Satya Marga, A. Rahman Isnain, and D. Alita, “Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA),” Abstrak, vol. 453, no. 4, pp. 453–463, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika
N. Apriliani, N. Suarna, and W. Prihartono, “Analisis Sentimen Review Penggunaan Tiktok Melalui Pendekatan Algoritma Naïve Bayes,” Jati (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 6, pp. 3725–3731, 2024, doi: 10.36040/jati.v7i6.8299.
D. S. Sayogo, B. Irawan, and A. Bahtiar, “Analisis Sentimen Ulasan Instagram Di Google Play Store Menggunakan Algoritma Naïve Bayes,” Jati (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 6, pp. 3314–3319, 2024, doi: 10.36040/jati.v7i6.8178.
M. Lestandy, A. Abdurrahim, A. Faruq, M. Irfan, and N. Setyawan, “Ensembled Machine Learning Methods and Feature Extraction Approaches for Suicide-Related Social Media,” Jurnal Nasional Pendidikan Teknik Informatika (Janapati), vol. 13, no. 2, pp. 192–203, 2024, doi: 10.23887/janapati.v13i2.70016.
A. D. D. Wibiyanto and A. Wibowo, “Penerapan Algoritma Multiclass Support Vector Machine Dan Tf-Idf Untuk Klasifikasi Topik Tugas Akhir,” Skanika Sistem Komputer Dan Teknik Informatika, vol. 6, no. 1, pp. 42–50, 2023, doi: 10.36080/skanika.v6i1.2999.
S. Rani, M. M. S. I. S.T., F. Fahriansyah, J. Herlita, and M. Mulyadi, “Analisis Komunikasi Dakwah Pada Genre Konten Youtube Legenda Studio Gromore Menggunakan Convolutional Neural Network,” Technologia Jurnal Ilmiah, vol. 15, no. 4, p. 641, 2024, doi: 10.31602/tji.v15i4.15612.
I. M. K. Karo, M. F. M. Fudzee, S. Kasim, and A. A. Ramli, “Karonese Sentiment Analysis: A New Dataset and Preliminary Result,” Joiv International Journal on Informatics Visualization, vol. 6, no. 2–2, p. 523, 2022, doi: 10.30630/joiv.6.2-2.1119.
Y. Ashari, H. Supendar, and R. Fahlapi, “Analisis Kepuasan Pengguna Terhadap Penerapan Aplikasi My Xl Dengan Metode Techhnology Acceptance Model,” Jka, vol. 2, no. 2, pp. 80–87, 2024, doi: 10.70052/jka.v2i2.98.
Badriyah, T. Chamidy, and S. Suhartono, “Application of SMOTE in Sentiment Analysis of MyXL User Reviews on Google Play Store,” Jiska (Jurnal Informatika Sunan Kalijaga), vol. 10, no. 1, pp. 74–86, 2025, doi: 10.14421/jiska.2025.10.1.74-86.
T. S. Ningsih, T. I. Hermanto, and I. M. Nugroho, “Sentiment Analysis of Mobile Provider Application Reviews Using Naive Bayes Algorithm and Support Vector Machine,” Sinkron, vol. 8, no. 2, pp. 824–835, 2024, doi: 10.33395/sinkron.v8i2.13469.
C. K. Herijanto and Y. Wahyuningsih, “Perbandingan Klasifikasi Label Tunggal Untuk Soal Ujian Fisika Menggunakan Naïve Bayes Dan K-Fold Cross Validation,” Jurnal Teknologi Terpadu, vol. 10, no. 1, pp. 40–45, 2024, doi: 10.54914/jtt.v10i1.1210.
T. Taslim, S. Handayani, and F. Fajrizal, “Kinerja Komparatif Optimasi Algoritma Naive Bayes Dalam Klasifikasi Teks Untuk Uji Klinis Kanker,” Eksplora Informatika, vol. 13, no. 1, pp. 113–123, 2023, doi: 10.30864/eksplora.v13i1.994.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Journal of Technology and Computer

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.