Utilizing DeepFace for Emotion Detection to Enhance User Experience in a School Library Application
Kata Kunci:
Digital library, Emotion detection, DeepFace, Visitor satisfaction, Desktop-based applicationAbstrak
The library is an essential facility that supports teaching and learning activities in schools. However, the library at SMP Pertiwi Medan still uses a manual system for book loan administration and has experienced a decline in students’ interest in visiting the library for reading. This study aims to design and develop a digital-based library application integrated with a visitor comfort detection system using the DeepFace method on a desktop platform. The application not only provides efficient features for managing book data, borrowing, and returning, but also measures visitors’ nonverbal comfort levels while they are in the library. This measurement aims to obtain data that can serve as a basis for evaluating comfort levels and designing strategies to increase students’ reading interest. The implementation of this application is expected to improve the efficiency of library management and provide a solution to enhance the quality of service as well as the attractiveness of the library for students.
Referensi
Honey and S. S. Oberoi, “Incorporating MTCNN and DeepFace: A novel hybrid deep learning method for human face detection and recognition,” Int. J. Eng. Comput. Sci., vol. 12, no. 12, 2023. [Online]. Available: https://ijecs.in/index.php/ijecs/article/view/4781.
T. Riadi and Basatha, “Pembuatan aplikasi toko komputer dengan CRUD berbasis Visual Basic dan MySQL,” J. Ilmiah, vol. 4, no. 1, pp. 411–423, 2023. [Online]. Available: https://ejournal.yasin-alsys.org/aldyas/article/view/4518.
J. Bae, “DigiFace-1M: Pelatihan model pengenalan wajah menggunakan data sintetis berskala besar,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR), 2022, pp. 4500–4509, doi: 10.xxxx/cvpr2022.4500.
J. Liu, H. Zhang, and X. Zhao, “DeFFace: Deep face recognition unlocked by illumination attributes,” Electronics, vol. 13, no. 22, p. 4566, 2023, doi: 10.3390/electronics13224566.
X. Chen, Y. Wang, and Z. Liu, “Face recognition and identification using deep learning,” ResearchGate, 2023. [Online]. Available: https://www.researchgate.net/publication/370784759_Face_Recognition_and_Identification_Using_Deep_Learning.
Y. Li and M. Gao, “Algoritma pengenalan wajah berbasis jaringan fitur multiskala dengan fusion hierarchical bilinear,” J. Multiscale Feature Fusion Netw., 2022. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/35341167/.
W. Zhang, J. Smith, and H. Kim, “Explaining bias in deep face recognition via image characteristics,” arXiv preprint arXiv:2208.11099, 2022. [Online]. Available: https://arxiv.org/abs/2208.11099.
L. Zhang, R. Chen, and S. Huang, “An ensemble face recognition mechanism based on three-way face matching,” Pattern Recognit. Lett., 2023, doi: 10.1016/j.patrec.2023.02.004.
B. Anwar, A. Ambiyar, and N. Jalinus, “Pengembangan sistem informasi perpustakaan berbasis desktop sebagai langkah strategis optimalisasi kualitas pendidikan,” J. SAINTIKOM, 2023, doi: 10.53513/jis.v23i1.9529.
M. I. Mustofa, P. C. Satriadi, R. N. Istiqomah, and A. T. Bimantoro, “Sistem informasi perpustakaan sekolah berbasis desktop,” Binary: J. Teknol. Inform. Edukasi, vol. 1, no. 1, pp. 7–14, 2024, doi: 10.30599/binary.v1i1.791.
I. P. Saputra, I. C. Sari, and M. A. Priadi, “Rancangan aplikasi peminjaman pada perpustakaan berbasis desktop di UPTD SDN 3 Rukti Basuki,” J. Ilm. Sist. Inform., vol. 3, no. 2, 2024, doi: 10.24127/jisi.v3i2.8051.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Journal of Technology and Computer

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.











