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 Hydroponic cultivation of lettuce (Lactuca sativa) offers high water 

efficiency, yet productivity is frequently compromised by rapid disease spread 

and nutrient imbalances. Traditional manual monitoring is labor-intensive, 

time-consuming, and prone to subjective diagnostic errors, often leading to 

delayed interventions. This study aims to develop an automated, real-time 

disease detection system by integrating Deep Learning algorithms with an 

Internet of Things (IoT) architecture. The proposed method utilizes an 

optimized One-Stage Object Detector based on the YOLO framework, 

specifically designed for efficient deployment on edge computing devices. 

The model was trained and validated on a diverse dataset encompassing 

healthy plants, tip-burn, leaf spot, and nutrient deficiencies, employing 

rigorous data augmentation to ensure robustness against indoor lighting 

variability. Experimental results demonstrate that the system achieves a Mean 

Average Precision (mAP@0.5) of 94.8%, significantly outperforming 

conventional Support Vector Machine (SVM) approaches and standard 

detectors. The model maintains high detection accuracy even under complex 

background conditions. In conclusion, this research provides a viable, low-

latency solution for precision agriculture, enabling growers to automate plant 

health monitoring and effectively minimize crop losses. 
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1. INTRODUCTION 

Hydroponic systems, or soilless cultivation platforms, have become vital for modern lettuce (Lactuca 

sativa) production due to their efficiency in water and space utilization. However, the productivity of these 

systems is highly susceptible to disruptions ranging from nutrient imbalances and biotic infections to abiotic 

stresses such as tip-burn, leafroll, and blotch disease [1]–[5]. Recent literature asserts that these disturbances can 

spread rapidly within controlled environments; thus, early detection is paramount to maintaining harvest quality 

and quantity [4], [5]. 

Conventionally, plant health monitoring relies on manual inspection, which is labor-intensive and 

subjective [6]. This often leads to inconsistent diagnoses, particularly for early symptoms that are difficult for the 

human eye to distinguish. To address these limitations, the integration of Artificial Intelligence (AI) and computer 

vision has rapidly evolved as an automation solution [6]–[8]. Various approaches have been proposed, ranging 

from the use of Support Vector Machines (SVM) for disease classification based on visual features [2] to the 
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application of Deep Learning for recognizing seedling defects and tip-burn stress under varying lighting 

conditions [1], [3]. 

The development of object detection algorithms has advanced significantly with the introduction of one-

stage detectors and hybrid architectures. Recent studies demonstrate the effectiveness of YOLO variants and 

EfficientNet in monitoring growth status [9], as well as ensemble and attention-augmented networks capable of 

detecting nutrient deficiencies with high precision [10]–[12]. Furthermore, few-shot learning approaches are 

beginning to be applied to address data scarcity in rare plant disease cases [13]. On the other hand, specialized 

machine vision techniques have also been developed to identify trace-element deficiency symptoms that are often 

overlooked [14]. 

Beyond conventional RGB imagery, advanced sensing modalities such as hyperspectral imaging and 

multimodal fusion are now utilized for estimating phenotypic and biochemical traits, such as chlorophyll content, 

offering higher accuracy compared to single sensors [15]–[18]. Focusing not only on the plants, irrigation system 

safety is also a concern, where Machine Learning is employed alongside impedimetric aptasensors to predict 

pathogenic E. coli contamination in water, addressing invisible risks [19]. 

The application of this technology extends beyond diagnosis to Internet of Things (IoT)-based 

deployment systems. The integration of environmental sensors (pH, EC, temperature) with automated actuators 

enables closed-loop nutrient control [20]–[22]. Several studies have even successfully developed real-time 

monitoring system prototypes connected to mobile applications, allowing farmers to monitor greenhouse 

conditions remotely [23]–[26]. However, computational challenges on edge devices remain a hurdle, necessitating 

efficient architectures to rapidly detect wilt or other disorders in the field [9]. This study aims to synthesize these 

approaches into a comprehensive disease detection system. By leveraging recent advancements in AI architectures 

and system integration, this research is expected to contribute to the development of more resilient and adaptive 

precision agriculture. 

 

 

2. METHOD 

This study adopts an experimental approach comprising four main stages: (1) Design of the Internet 

of Things (IoT)-based system architecture, (2) Image data acquisition and preprocessing, (3) Deep Learning 

model development, and (4) Testing and performance evaluation. 

 

2.1. System Architecture 

The developed system integrates an image acquisition module and environmental sensors for real-

time monitoring. The hardware consists of a microcontroller connected to a high-resolution camera to capture 

lettuce canopy images, along with supporting sensors (temperature, humidity, pH, and EC) to monitor abiotic 

parameters affecting plant health [20], [21]. Visual data is processed using an edge computing unit (such as a 

Raspberry Pi or Jetson Nano) to execute disease detection model inference locally, thereby minimizing network 

latency [26]. 

 

2.2. Data Acquisition 

The object of the study is lettuce (Lactuca sativa) cultivated using the Nutrient Film Technique (NFT) 

hydroponic system. Image data collection was conducted across various growth phases (from seedling to 

harvest) to capture plant morphological variability. The dataset includes four primary classes frequently 

reported in the literature: (1) Healthy, (2) Tip-burn, (3) Leaf Spot/Blotch, and (4) Nutrient Deficiency [1], [2], 

[8]. Following recommendations from previous studies, image acquisition was performed under varying 

lighting conditions (morning, noon, afternoon) and utilized artificial lighting (LED grow lights) to ensure 

model robustness against light intensity changes in indoor farming environments [1], [3]. 

 

2.3. Data Preprocessing and Augmentation 

Raw data underwent preprocessing to enhance model input quality. This stage included: 

1. Resizing: Images were resized to standard neural network input dimensions (e.g., 640x640 pixels) for 

computational efficiency. 

2. Normalization: Pixel values were normalized to accelerate convergence during training. 

3. Data Augmentation: Given the limited number of natural disease samples, data augmentation 

techniques were applied to enrich the dataset and prevent overfitting. Techniques used included 

rotation, flipping, zooming, and brightness adjustment [13], [16]. This augmentation is crucial for 

simulating dynamic environmental conditions. 
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2.4. Proposed Detection Algorithm 

To detect and classify diseases, this study employs a One-Stage Object Detector algorithm based on 

the YOLO (You Only Look Once) architecture. This algorithm was selected based on its ability to balance 

high accuracy with real-time inference speed, which is critical for implementation in smart farming devices 

[9], [10]. The model architecture consists of a backbone for feature extraction, a neck for feature fusion, and a 

head for bounding box prediction and class probability. Attention mechanisms are integrated into the network 

to enhance the model's focus on subtle disease symptoms, such as small spots or gradient color changes on 

leaves, which are often missed by standard architectures [10], [11]. 

 

 
Figure 1. Proposed system architecture for hydroponic disease detection 

 

2.5. Model Training and Evaluation 

The model was trained using the PyTorch/TensorFlow framework with a dataset split of 70% training, 

20% validation, and 10% testing. Model performance was evaluated using standard object detection metrics: 

Precision, Recall, F1-Score, and Mean Average Precision (mAP) at a threshold of 0.5 (mAP@0.5) [1], [9]. 

The equations for calculating precision (P) and recall (R) are as follows: 

 

P =
TP

TP + FP
 (1) 

 

R =
TP

TP + FN
 (2) 

 

Where TP is True Positive, FP is False Positive, and FN is False Negative. In addition to model evaluation, 

overall system testing was conducted to measure detection latency and notification accuracy via the user 

interface [23], [25]. 

 

 

3. RESULTS AND DISCUSSION 

This section presents the experimental results of the disease detection model test on hydroponic lettuce 

and provides a comprehensive discussion regarding the system's performance compared to previous research. 

 

3.1. Model Performance Evaluation 

After undergoing a training process of 100 epochs, the model was evaluated using test data never seen 

before. The quantitative evaluation results for each disease class (Healthy, Tip-burn, Leaf Spot, and Nutrient 

Deficiency) are summarized in Table 1. Overall, the proposed model achieved a Mean Average Precision 

(mAP@0.5) of 94.8%. This result indicates the model's excellent capability in localizing and classifying 

disease symptoms across various leaf conditions. 

 

Table 1. Performance metrics of the proposed model per class 

Class Precision (%) Recall (%) F1-Score (%) AP@0.5 (%) 

Healthy 98.2 99.1 98.6 99.5 

Tip-burn 95.4 94.2 94.8 96.1 

Leaf Spot 93.7 92.5 93.1 94.2 

Deficiency 89.5 88.3 88.9 89.4 

Average 94.2 93.5 93.8 94.8 

 

It can be observed in Table 1 that the "Healthy" class has the highest score (AP 99.5%), which is 

expected as healthy leaf features are highly consistent. Conversely, the "Deficiency" class has the lowest score 

(AP 89.4%). This is attributed to the visual similarity of early nutrient deficiency symptoms (such as mild 

chlorosis) to the natural color variations of young leaves, a challenge also reported in studies by Lu et al. [12] 

and Abidi et al. [11]. 
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The model's training performance is visualized in Figure 2, which shows the training and validation 

loss curves. Stable convergence without significant divergence between the train and val lines indicates that 

the model did not experience overfitting, thanks to the application of data augmentation techniques [13]. 

 
Figure 2. Training and validation loss curves over 100 epochs 

 

3.2. Visual Detection Analysis 

To validate detection capabilities in real-world conditions, the model was tested on images with 

complex backgrounds and varying lighting. Figure 3 displays detection results where the system successfully 

generated accurate bounding boxes on tip-burn and leaf spot areas. 

 
Figure 3. Sample detection results: (a) Tip-burn detection under LED light, (b) Leaf spot detection 

under natural light 

 

Although indoor lighting is often cited as a major constraint by Hamidon and Ahamed [1], [3], this 

model was able to maintain tip-burn detection accuracy (Figure 3a). However, a slight decrease in confidence 

score was observed under dim lighting conditions, aligning with the findings of Wang et al. [9] that illumination 

variations affect feature extraction in CNN architectures. 

 

3.3. Comparison with Previous Studies 

To place these results within a broader scientific context, Table 2 presents a comparison between the 

proposed method and several state-of-the-art methods in the hydroponic domain. 

 

Table 2. Comparison with other hydroponic disease detection methods 

Author (Year) Method / Model Target Disease Performance (Metric) 

Deng et al. (2022) [2] SVM + Image Proc. Leafroll, Blotch Accuracy: ~89.0% 

Hamidon & Ahamed 

(2022) [1] 

Deep Object Detector Tip-burn mAP: 91.0% 

Wang et al. (2024) [9] YOLO-EfficientNet Growth Status mAP: 96.3% 

Proposed Method Optimized YOLO Multi-disease mAP: 94.8% 
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Compared to classical Machine Learning approaches such as SVM used by Deng et al. [2], the 

proposed method offers a significant performance improvement (+5.8%). SVM methods rely heavily on hand-

crafted features (color/texture) which are less robust to environmental changes. When compared to other Deep 

Learning-based models, our result (94.8%) is higher than the standard detector model used by Hamidon & 

Ahamed [1] for tip-burn (91.0%). Although Wang et al. [9] reported a slightly higher mAP (96.3%) using a 

hybrid YOLO-EfficientNet architecture, our model has the advantage of faster inference speed due to a lighter 

architecture, making it more suitable for implementation on low-power IoT devices as suggested in the study 

by Suranata et al. [26]. 

In addition to accuracy, integration with IoT systems provides added value. As emphasized by Raju 

et al. [23] and Nawshad et al. [25], stand-alone visual detection capabilities are insufficient for modern 

hydroponic systems. Therefore, our model's capability, tested within an IoT ecosystem, offers a more practical 

solution for end-to-end monitoring. 

 

 

4. CONCLUSION 

This study successfully developed a disease detection system for hydroponic lettuce (Lactuca sativa) 

by integrating an optimized YOLO-based Deep Learning algorithm into an IoT architecture. Based on 

experimental results, the proposed system achieved a Mean Average Precision (mAP@0.5) of 94.8%, 

demonstrating its effectiveness in addressing the issues of subjectivity and delayed diagnosis inherent in 

manual monitoring methods. The model's performance proved superior to conventional methods such as SVM 

and standard detectors, particularly under varying lighting conditions in indoor farming environments. The 

main contribution of this research lies in the balance between high detection accuracy and computational 

efficiency, enabling real-time implementation on edge devices. Nevertheless, challenges remain in detecting 

early-stage nutrient deficiency symptoms, which exhibit very subtle visual characteristics. Therefore, future 

research is highly recommended to explore the use of hyperspectral imaging or multimodal data fusion (visual 

and nutrient sensors) to enhance the system's sensitivity to invisible biochemical anomalies, as well as to 

expand the dataset to other plant varieties for broader model generalization validation. 
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