

Artificial Intelligence-Based Hydroponic Plant Disease Detection System (*Lactuca sativa*)

M. Rhifky Wayahdi¹, Fahmi Ruziq², Nurhajijah³

^{1,2}Sistem Informasi, Fakultas Teknologi, Universitas Battuta, Indonesia

³Agroteknologi, Fakultas Pertanian, Universitas Muhammadiyah Sumatera Utara, Indonesia

[1muhammadrhifkywayahdi@gmail.com](mailto:muhammadrhifkywayahdi@gmail.com), [2fahmiruziq89@gmail.com](mailto:fahmiruziq89@gmail.com), [3nurhajijah@umsu.ac.id](mailto:nurhajijah@umsu.ac.id)

Article Info

Article history:

Received October 01, 2025

Revised November 15, 2025

Accepted November 27, 2025

Keywords:

Deep Learning
Disease Detection
Hydroponics
Internet of Things
Lactuca sativa
YOLO

ABSTRACT

Hydroponic cultivation of lettuce (*Lactuca sativa*) offers high water efficiency, yet productivity is frequently compromised by rapid disease spread and nutrient imbalances. Traditional manual monitoring is labor-intensive, time-consuming, and prone to subjective diagnostic errors, often leading to delayed interventions. This study aims to develop an automated, real-time disease detection system by integrating Deep Learning algorithms with an Internet of Things (IoT) architecture. The proposed method utilizes an optimized One-Stage Object Detector based on the YOLO framework, specifically designed for efficient deployment on edge computing devices. The model was trained and validated on a diverse dataset encompassing healthy plants, tip-burn, leaf spot, and nutrient deficiencies, employing rigorous data augmentation to ensure robustness against indoor lighting variability. Experimental results demonstrate that the system achieves a Mean Average Precision (mAP@0.5) of 94.8%, significantly outperforming conventional Support Vector Machine (SVM) approaches and standard detectors. The model maintains high detection accuracy even under complex background conditions. In conclusion, this research provides a viable, low-latency solution for precision agriculture, enabling growers to automate plant health monitoring and effectively minimize crop losses.

This is an open-access article under the [CC BY-SA](#) license.

Corresponding Author:

M. Rhifky Wayahdi
Universitas Battuta
Email: muhammadrhifkywayahdi@gmail.com

1. INTRODUCTION

Hydroponic systems, or soilless cultivation platforms, have become vital for modern lettuce (*Lactuca sativa*) production due to their efficiency in water and space utilization. However, the productivity of these systems is highly susceptible to disruptions ranging from nutrient imbalances and biotic infections to abiotic stresses such as tip-burn, leafroll, and blotch disease [1]–[5]. Recent literature asserts that these disturbances can spread rapidly within controlled environments; thus, early detection is paramount to maintaining harvest quality and quantity [4], [5].

Conventionally, plant health monitoring relies on manual inspection, which is labor-intensive and subjective [6]. This often leads to inconsistent diagnoses, particularly for early symptoms that are difficult for the human eye to distinguish. To address these limitations, the integration of Artificial Intelligence (AI) and computer vision has rapidly evolved as an automation solution [6]–[8]. Various approaches have been proposed, ranging from the use of Support Vector Machines (SVM) for disease classification based on visual features [2] to the

application of Deep Learning for recognizing seedling defects and tip-burn stress under varying lighting conditions [1], [3].

The development of object detection algorithms has advanced significantly with the introduction of one-stage detectors and hybrid architectures. Recent studies demonstrate the effectiveness of YOLO variants and EfficientNet in monitoring growth status [9], as well as ensemble and attention-augmented networks capable of detecting nutrient deficiencies with high precision [10]–[12]. Furthermore, few-shot learning approaches are beginning to be applied to address data scarcity in rare plant disease cases [13]. On the other hand, specialized machine vision techniques have also been developed to identify trace-element deficiency symptoms that are often overlooked [14].

Beyond conventional RGB imagery, advanced sensing modalities such as hyperspectral imaging and multimodal fusion are now utilized for estimating phenotypic and biochemical traits, such as chlorophyll content, offering higher accuracy compared to single sensors [15]–[18]. Focusing not only on the plants, irrigation system safety is also a concern, where Machine Learning is employed alongside impedimetric aptasensors to predict pathogenic *E. coli* contamination in water, addressing invisible risks [19].

The application of this technology extends beyond diagnosis to Internet of Things (IoT)-based deployment systems. The integration of environmental sensors (pH, EC, temperature) with automated actuators enables closed-loop nutrient control [20]–[22]. Several studies have even successfully developed real-time monitoring system prototypes connected to mobile applications, allowing farmers to monitor greenhouse conditions remotely [23]–[26]. However, computational challenges on edge devices remain a hurdle, necessitating efficient architectures to rapidly detect wilt or other disorders in the field [9]. This study aims to synthesize these approaches into a comprehensive disease detection system. By leveraging recent advancements in AI architectures and system integration, this research is expected to contribute to the development of more resilient and adaptive precision agriculture.

2. METHOD

This study adopts an experimental approach comprising four main stages: (1) Design of the Internet of Things (IoT)-based system architecture, (2) Image data acquisition and preprocessing, (3) Deep Learning model development, and (4) Testing and performance evaluation.

2.1. System Architecture

The developed system integrates an image acquisition module and environmental sensors for real-time monitoring. The hardware consists of a microcontroller connected to a high-resolution camera to capture lettuce canopy images, along with supporting sensors (temperature, humidity, pH, and EC) to monitor abiotic parameters affecting plant health [20], [21]. Visual data is processed using an edge computing unit (such as a Raspberry Pi or Jetson Nano) to execute disease detection model inference locally, thereby minimizing network latency [26].

2.2. Data Acquisition

The object of the study is lettuce (*Lactuca sativa*) cultivated using the Nutrient Film Technique (NFT) hydroponic system. Image data collection was conducted across various growth phases (from seedling to harvest) to capture plant morphological variability. The dataset includes four primary classes frequently reported in the literature: (1) Healthy, (2) Tip-burn, (3) Leaf Spot/Blotch, and (4) Nutrient Deficiency [1], [2], [8]. Following recommendations from previous studies, image acquisition was performed under varying lighting conditions (morning, noon, afternoon) and utilized artificial lighting (LED grow lights) to ensure model robustness against light intensity changes in indoor farming environments [1], [3].

2.3. Data Preprocessing and Augmentation

Raw data underwent preprocessing to enhance model input quality. This stage included:

1. **Resizing:** Images were resized to standard neural network input dimensions (e.g., 640x640 pixels) for computational efficiency.
2. **Normalization:** Pixel values were normalized to accelerate convergence during training.
3. **Data Augmentation:** Given the limited number of natural disease samples, data augmentation techniques were applied to enrich the dataset and prevent overfitting. Techniques used included rotation, flipping, zooming, and brightness adjustment [13], [16]. This augmentation is crucial for simulating dynamic environmental conditions.

2.4. Proposed Detection Algorithm

To detect and classify diseases, this study employs a One-Stage Object Detector algorithm based on the YOLO (You Only Look Once) architecture. This algorithm was selected based on its ability to balance high accuracy with real-time inference speed, which is critical for implementation in smart farming devices [9], [10]. The model architecture consists of a backbone for feature extraction, a neck for feature fusion, and a head for bounding box prediction and class probability. Attention mechanisms are integrated into the network to enhance the model's focus on subtle disease symptoms, such as small spots or gradient color changes on leaves, which are often missed by standard architectures [10], [11].

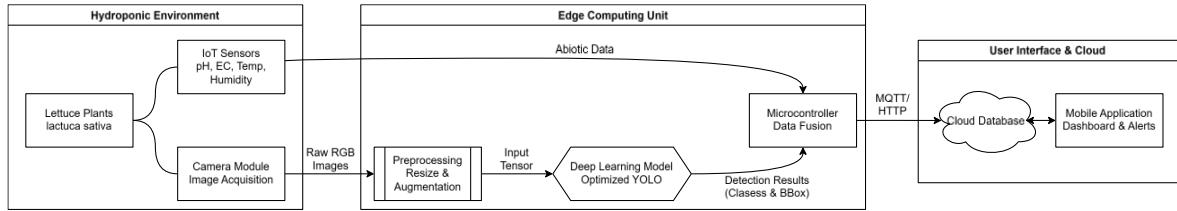


Figure 1. Proposed system architecture for hydroponic disease detection

2.5. Model Training and Evaluation

The model was trained using the PyTorch/TensorFlow framework with a dataset split of 70% training, 20% validation, and 10% testing. Model performance was evaluated using standard object detection metrics: Precision, Recall, F1-Score, and Mean Average Precision (mAP) at a threshold of 0.5 (mAP@0.5) [1], [9]. The equations for calculating precision (P) and recall (R) are as follows:

$$P = \frac{TP}{TP + FP} \quad (1)$$

$$R = \frac{TP}{TP + FN} \quad (2)$$

Where TP is True Positive, FP is False Positive, and FN is False Negative. In addition to model evaluation, overall system testing was conducted to measure detection latency and notification accuracy via the user interface [23], [25].

3. RESULTS AND DISCUSSION

This section presents the experimental results of the disease detection model test on hydroponic lettuce and provides a comprehensive discussion regarding the system's performance compared to previous research.

3.1. Model Performance Evaluation

After undergoing a training process of 100 epochs, the model was evaluated using test data never seen before. The quantitative evaluation results for each disease class (Healthy, Tip-burn, Leaf Spot, and Nutrient Deficiency) are summarized in Table 1. Overall, the proposed model achieved a Mean Average Precision (mAP@0.5) of **94.8%**. This result indicates the model's excellent capability in localizing and classifying disease symptoms across various leaf conditions.

Table 1. Performance metrics of the proposed model per class

Class	Precision (%)	Recall (%)	F1-Score (%)	AP@0.5 (%)
Healthy	98.2	99.1	98.6	99.5
Tip-burn	95.4	94.2	94.8	96.1
Leaf Spot	93.7	92.5	93.1	94.2
Deficiency	89.5	88.3	88.9	89.4
Average	94.2	93.5	93.8	94.8

It can be observed in Table 1 that the "Healthy" class has the highest score (AP 99.5%), which is expected as healthy leaf features are highly consistent. Conversely, the "Deficiency" class has the lowest score (AP 89.4%). This is attributed to the visual similarity of early nutrient deficiency symptoms (such as mild chlorosis) to the natural color variations of young leaves, a challenge also reported in studies by Lu et al. [12] and Abidi et al. [11].

The model's training performance is visualized in Figure 2, which shows the training and validation loss curves. Stable convergence without significant divergence between the train and val lines indicates that the model did not experience overfitting, thanks to the application of data augmentation techniques [13].

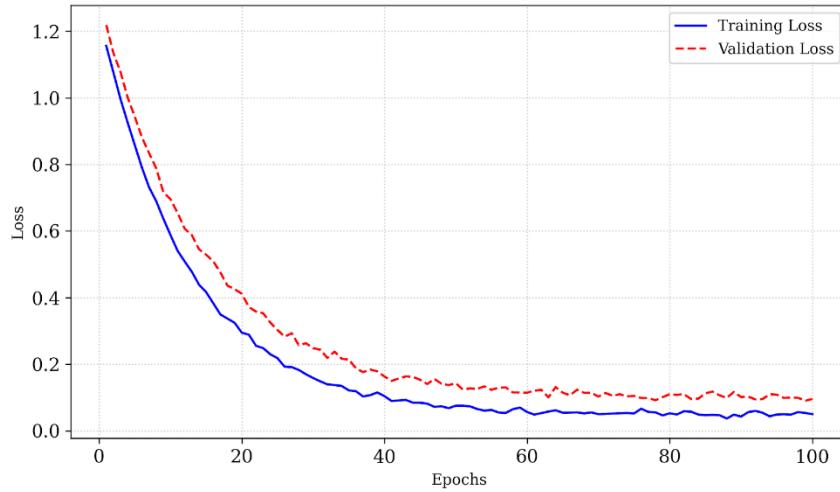


Figure 2. Training and validation loss curves over 100 epochs

3.2. Visual Detection Analysis

To validate detection capabilities in real-world conditions, the model was tested on images with complex backgrounds and varying lighting. Figure 3 displays detection results where the system successfully generated accurate bounding boxes on tip-burn and leaf spot areas.

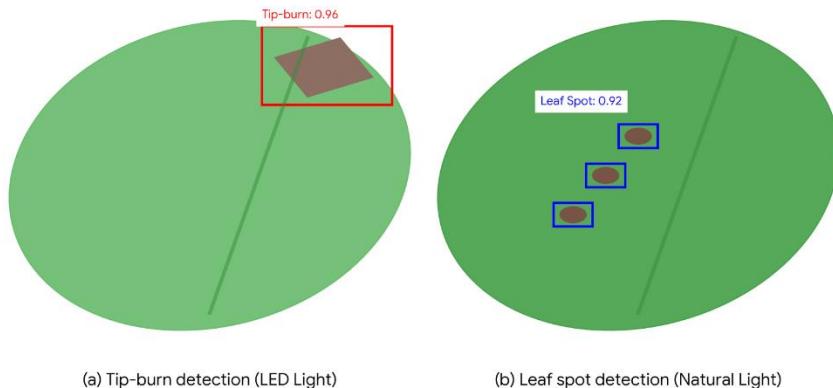


Figure 3. Sample detection results: (a) Tip-burn detection under LED light, (b) Leaf spot detection under natural light

Although indoor lighting is often cited as a major constraint by Hamidon and Ahamed [1], [3], this model was able to maintain tip-burn detection accuracy (Figure 3a). However, a slight decrease in confidence score was observed under dim lighting conditions, aligning with the findings of Wang et al. [9] that illumination variations affect feature extraction in CNN architectures.

3.3. Comparison with Previous Studies

To place these results within a broader scientific context, Table 2 presents a comparison between the proposed method and several state-of-the-art methods in the hydroponic domain.

Table 2. Comparison with other hydroponic disease detection methods

Author (Year)	Method / Model	Target Disease	Performance (Metric)
Deng et al. (2022) [2]	SVM + Image Proc.	Leafroll, Blotch	Accuracy: ~89.0%
Hamidon & Ahamed (2022) [1]	Deep Object Detector	Tip-burn	mAP: 91.0%
Wang et al. (2024) [9]	YOLO-EfficientNet	Growth Status	mAP: 96.3%
Proposed Method	Optimized YOLO	Multi-disease	mAP: 94.8%

Compared to classical Machine Learning approaches such as SVM used by Deng et al. [2], the proposed method offers a significant performance improvement (+5.8%). SVM methods rely heavily on hand-crafted features (color/textture) which are less robust to environmental changes. When compared to other Deep Learning-based models, our result (94.8%) is higher than the standard detector model used by Hamidon & Ahamed [1] for tip-burn (91.0%). Although Wang et al. [9] reported a slightly higher mAP (96.3%) using a hybrid YOLO-EfficientNet architecture, our model has the advantage of faster inference speed due to a lighter architecture, making it more suitable for implementation on low-power IoT devices as suggested in the study by Suranata et al. [26].

In addition to accuracy, integration with IoT systems provides added value. As emphasized by Raju et al. [23] and Nawshad et al. [25], stand-alone visual detection capabilities are insufficient for modern hydroponic systems. Therefore, our model's capability, tested within an IoT ecosystem, offers a more practical solution for end-to-end monitoring.

4. CONCLUSION

This study successfully developed a disease detection system for hydroponic lettuce (*Lactuca sativa*) by integrating an optimized YOLO-based Deep Learning algorithm into an IoT architecture. Based on experimental results, the proposed system achieved a Mean Average Precision (mAP@0.5) of 94.8%, demonstrating its effectiveness in addressing the issues of subjectivity and delayed diagnosis inherent in manual monitoring methods. The model's performance proved superior to conventional methods such as SVM and standard detectors, particularly under varying lighting conditions in indoor farming environments. The main contribution of this research lies in the balance between high detection accuracy and computational efficiency, enabling real-time implementation on edge devices. Nevertheless, challenges remain in detecting early-stage nutrient deficiency symptoms, which exhibit very subtle visual characteristics. Therefore, future research is highly recommended to explore the use of hyperspectral imaging or multimodal data fusion (visual and nutrient sensors) to enhance the system's sensitivity to invisible biochemical anomalies, as well as to expand the dataset to other plant varieties for broader model generalization validation.

REFERENCES

- [1] M. Hamidon and T. Ahamed, "Detection of Tip-Burn Stress on Lettuce Grown in an Indoor Environment Using Deep Learning Algorithms," *Sensors*, vol. 22, no. 19, p. 7251, 2022, doi: 10.3390/s22197251.
- [2] W. Deng *et al.*, "Disease Feature Recognition of Hydroponic Lettuce Images Based on Support Vector Machine," *Traitement Du Signal*, vol. 39, no. 2, pp. 617–625, 2022, doi: 10.18280/ts.390224.
- [3] M. Hamidon and T. Ahamed, "Detection of Defective Lettuce Seedlings Grown in an Indoor Environment under Different Lighting Conditions Using Deep Learning Algorithms," *Sensors*, vol. 23, no. 13, p. 5790, 2023, doi: 10.3390/s23135790.
- [4] R. Verma *et al.*, "Exploring Hydroponics and the Associated Technologies for Use in Medium-and Small-scale Operations: A Review," *Int. J. Environ. Clim. Change*, vol. 13, no. 10, pp. 4474–4483, 2023, doi: 10.9734/ijecc/2023/v13i103125.
- [5] U. Thapa *et al.*, "Advancements in Hydroponic Systems: A Comprehensive Review," *Arch. Curr. Res. Int.*, vol. 24, no. 11, pp. 317–328, 2024, doi: 10.9734/acri/2024/v24i11973.
- [6] D. Derisma, N. Rokhman, and I. Usuman, "Systematic Review of the Early Detection and Classification of Plant Diseases Using Deep Learning," in *IOP Conf. Ser. Earth Environ. Sci.*, vol. 1097, no. 1, p. 012042, 2022, doi: 10.1088/1755-1315/1097/1/012042.
- [7] M. Taha *et al.*, "Using Deep Convolutional Neural Network for Image-Based Diagnosis of Nutrient Deficiencies in Plants Grown in Aquaponics," *Chemosensors*, vol. 10, no. 2, p. 45, 2022, doi: 10.3390/chemosensors10020045.
- [8] M. Taha *et al.*, "High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images," *Plants*, vol. 13, no. 3, p. 392, 2024, doi: 10.3390/plants13030392.
- [9] Y. Wang, M. Wu, and Y. Shen, "Identifying the Growth Status of Hydroponic Lettuce Based on YOLO-EfficientNet," *Plants*, vol. 13, no. 3, p. 372, 2024, doi: 10.3390/plants13030372.
- [10] Ç. Bakır and A. Gezer, "Real-Time Automatic Detection of Nutrient Deficiency in Lettuce Plants With New YOLOV12 model," *J. Sensors*, vol. 2025, no. 1, 2025, doi: 10.1155/js/5592225.
- [11] M. Abidi, S. Chintakindi, A. Rehman, and M. Mohammed, "Elucidation of Intelligent Classification Framework for Hydroponic Lettuce Deficiency Using Enhanced Optimization Strategy and Ensemble Multi-Dilated Adaptive Networks," *IEEE Access*, vol. 12, pp. 58406–58426, 2024, doi: 10.1109/access.2024.3392482.

[12] J. Lu, K. Peng, Q. Wang, and C. Sun, "Lettuce Plant Trace-Element-Deficiency Symptom Identification via Machine Vision Methods," *Agriculture*, vol. 13, no. 8, p. 1614, 2023, doi: 10.3390/agriculture13081614.

[13] H. Lin, R. Tse, S. Tang, Z. Qiang, and G. Pau, "Few-Shot Learning for Plant-Disease Recognition in the Frequency Domain," *Plants*, vol. 11, no. 21, p. 2814, 2022, doi: 10.3390/plants11212814.

[14] J. Lu, K. Peng, Q. Wang, and C. Sun, "Lettuce Plant Trace-Element-Deficiency Symptom Identification via Machine Vision Methods," *Agriculture*, vol. 13, no. 8, p. 1614, 2023, doi: 10.3390/agriculture13081614.

[15] S. Yu *et al.*, "Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce," *Front. Plant Sci.*, vol. 13, 2022, doi: 10.3389/fpls.2022.927832.

[16] L. Hou *et al.*, "Multimodal Data Fusion for Precise Lettuce Phenotype Estimation Using Deep Learning Algorithms," *Plants*, vol. 13, no. 22, p. 3217, 2024, doi: 10.3390/plants13223217.

[17] M. Taha *et al.*, "High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images," *Plants*, vol. 13, no. 3, p. 392, 2024, doi: 10.3390/plants13030392.

[18] L. Shuai *et al.*, "Real-time dense small object detection algorithm based on multi-modal tea shoots," *Front. Plant Sci.*, vol. 14, 2023, doi: 10.3389/fpls.2023.1224884.

[19] H. Qian, E. McLamore, and N. Bliznyuk, "Machine Learning for Improved Detection of Pathogenic *E. coli* in Hydroponic Irrigation Water Using Impedimetric Aptasensors: A Comparative Study," *ACS Omega*, vol. 8, no. 37, pp. 34171–34179, 2023, doi: 10.1021/acsomega.3c05797.

[20] I. Agustian, B. Prayoga, H. Santosa, N. Daratha, and R. Faurina, "NFT Hydroponic Control Using Mamdani Fuzzy Inference System," *J. Robot. Control*, vol. 3, no. 3, pp. 374–385, 2022, doi: 10.18196/jrc.v3i3.14714.

[21] A. Austria, J. Fabros, K. Sumilang, J. Bernardino, and A. Doctor, "Development of IoT Smart Greenhouse System for Hydroponic Gardens," *Int. J. Comput. Sci. Res.*, vol. 7, pp. 2111–2136, 2023, doi: 10.25147/ijcsr.2017.001.1.149.

[22] H. Lestari, A. Kurniawan, and T. Yuwono, "Otomatisasi Ultrasonik Fogger Budidaya Selada Keriting Hijau Secara Fogponik di Pertanian Indoor berbasis Internet of Things (IoT)," *J. Ilm. Inov.*, vol. 23, no. 2, pp. 111–117, 2023, doi: 10.25047/jii.v23i2.3616.

[23] S. Raju *et al.*, "Design and Implementation of Smart Hydroponics Farming Using IoT-Based AI Controller with Mobile Application System," *J. Nanomater.*, vol. 2022, no. 1, 2022, doi: 10.1155/2022/4435591.

[24] W. Rofiansyah *et al.*, "IoT-based control and monitoring system for hydroponic plant growth using image processing and mobile applications," *PeerJ Comput. Sci.*, vol. 11, p. e2763, 2025, doi: 10.7717/peerj.cs.2763.

[25] N. Nawshad *et al.*, "A robust hydroponic system for horticulture farming using deep learning, IoT, and mobile application," *PLOS ONE*, vol. 20, no. 9, p. e0330488, 2025, doi: 10.1371/journal.pone.0330488.

[26] I. Suranata *et al.*, "A System Architecture for Early Wilt Detection in Hydroponic Crops: An Implementation and Assessment," in *IOP Conf. Ser. Earth Environ. Sci.*, vol. 1395, no. 1, p. 012027, 2024, doi: 10.1088/1755-1315/1395/1/012027.