
Journal of Technology and Computer (JOTECHCOM) 

Vol. 1, No. 4, November 2024, pp. 61~66 

ISSN: 3048-0477 (Media Online)                       61 

 

Journal homepage: https://journal.technolabs.co.id/index.php/jotechcom 

Real-Time Classification of Hydroponic Vegetable Types on 

Mobile Devices Using Lightweight Deep Learning Models 
 

 

M. Rhifky Wayahdi1, Fahmi Ruziq2, Nurhajijah3 
1,2Sistem Informasi, Fakultas Teknologi, Universitas Battuta, Indonesia 

3Agroteknologi, Fakultas Pertanian, Universitas Muhammadiyah Sumatera Utara, Indonesia 
1muhammadrhifkywayahdi@gmail.com, 2fahmiruziq89@gmail.com, 3nurhajijah@umsu.ac.id 

 

 

 

Article Info  ABSTRACT 

Article history: 

Received September 25, 2024 

Revised October 28, 2024 

Accepted November 30, 2024 

 

 Hydroponic cultivation requires precise monitoring to ensure crop quality and 

productivity, yet manual identification of vegetable varieties and their growth 

status remains labor-intensive and prone to error. This study aims to develop 

a real-time, mobile-based classification system for hydroponic vegetables 

using lightweight Deep Learning models optimized for edge computing. The 

proposed method evaluates two distinct architectures, MobileNetV3 and 

YOLO-Nano, trained via transfer learning on a dataset comprising major 

hydroponic crops such as Lettuce, Pak Choy, Mustard Greens, and Cherry 

Tomatoes. Experimental results demonstrate that while YOLO-Nano offers 

superior inference speed (~55 FPS), MobileNetV3 achieves a significantly 

higher classification accuracy of 96.4% while maintaining a real-time 

performance of ~35 FPS on standard mobile hardware. The study concludes 

that MobileNetV3 provides the optimal balance between accuracy and 

computational efficiency for handheld agricultural applications. This research 

contributes a scalable, low-cost solution for smart farming, enabling 

producers to perform rapid, on-site digital inventory and quality assessment 

without reliance on internet connectivity. 
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1. INTRODUCTION 

Hydroponic systems have become a cornerstone of modern precision agriculture, particularly for 

cultivating leafy greens and high-value vegetable crops in controlled environments. The widespread adoption of 

soilless cultivation is driven by its ability to optimize water usage, accelerate growth cycles, and maximize yield 

in limited spaces [1], [2]. However, the management of these systems requires rigorous monitoring, as hydroponic 

crops are highly susceptible to rapid fluctuations in nutrient balance and biotic stress [3], [4]. Consequently, there 

is a critical need for automated, scalable solutions to identify crop types and health status in real-time, replacing 

labor-intensive manual inspections that are often prone to subjectivity and delay [5], [6]. 

Recent advancements in Artificial Intelligence (AI) and computer vision have established deep learning 

as a robust baseline for plant classification tasks [7], [8]. While Convolutional Neural Networks (CNNs) have 

demonstrated high accuracy in recognizing plant species and diseases [9], [10], deploying these models on mobile 

devices introduces significant constraints regarding latency, energy consumption, and computational memory 

[11], [12]. The literature indicates a growing trend toward "lightweight" architectures—such as MobileNet, 

EfficientNet, and optimized YOLO variants—which achieve favorable trade-offs between accuracy and inference 

speed on edge hardware [13], [14], [15]. 
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Furthermore, the integration of mobile applications with Internet of Things (IoT) frameworks has proven 

feasible for end-to-end hydroponic monitoring. Studies have successfully demonstrated mobile systems that not 

only perform visual classification but also interface with environmental sensors to provide holistic decision 

support [16], [17], [18]. Despite these advances, challenges remain in addressing domain shifts between training 

data and real-world hydroponic environments, as well as managing class imbalance in diverse vegetable datasets 

[19], [20]. 

This study proposes a practical approach for the real-time classification of hydroponic vegetable types 

using lightweight deep learning models deployed on mobile devices. By synthesizing evidence from recent 

implementations of edge computing in agriculture [21], [22] and leveraging transfer learning strategies effective 

for small datasets [23], [24], this research aims to define a scalable pipeline for on-device inference. This approach 

addresses the operational needs of modern hydroponic farming [25], bridging the gap between agronomic 

requirements and mobile computational capabilities. 

 

 

2. METHOD 

This study adopts an experimental engineering approach to design, implement, and evaluate a real-

time vegetable classification system on mobile devices. The research methodology is structured 

chronologically into four phases: (1) System Architecture Design, (2) Dataset Acquisition and Preprocessing, 

(3) Lightweight Model Development, and (4) Mobile Deployment and Evaluation. The overall research flow 

is illustrated in Figure 1. 

 

2.1. System Architecture 

The proposed system architecture employs an Edge Computing paradigm to address the latency and 

connectivity constraints typical in agricultural environments [11], [12]. Unlike cloud-centric approaches, the 

inference process is executed locally on the mobile device. The system comprises an image acquisition module 

utilizing a standard smartphone camera, a preprocessing unit for image normalization, and an inference engine 

based on the TensorFlow Lite framework [6]. This architecture is designed to be compatible with broader IoT-

based smart hydroponic ecosystems, allowing for potential future integration with environmental sensor data 

[16], [17], [22]. 

 
Figure 1. Research methodology flowchart 



ISSN: 3048-0477   

 

Journal of Technology and Computer (JOTECHCOM), Vol. 1, No. 4, November 2024: 61-66 

63 

2.2. Data Acquisition 

The dataset was constructed by collecting images of hydroponic vegetables from various cultivation 

systems, including Nutrient Film Technique (NFT) and Wick systems, to capture diverse morphological traits 

[1], [3]. The target classes selected for this study include economically significant hydroponic crops: Lettuce 

(Lactuca sativa), Pak Choy (Brassica rapa), Mustard Greens, and Cherry Tomatoes [2]. To ensure the model's 

robustness against real-world variability, image acquisition was conducted under different environmental 

conditions, including natural sunlight and artificial LED grow lights [4], [10]. This diversity is critical to 

mitigate the domain shift often observed when models trained in controlled settings are deployed in production 

environments [19]. 

 

2.3. Preprocessing and Augmentation 

Raw images underwent preprocessing to standardize the input for the deep learning models. This 

process involved resizing images to a fixed resolution (224×224 pixels) and pixel value normalization. Given 

the challenge of class imbalance and the limited availability of samples for specific varieties, data augmentation 

techniques were applied. Geometric transformations (rotation, flipping) and photometric adjustments 

(brightness, contrast jitter) were utilized to artificially expand the dataset and prevent overfitting [8], [20]. 

 

2.4. Lightweight Model Development 

This study focuses on "lightweight" Convolutional Neural Network (CNN) architectures optimized 

for mobile inference. Specifically, we evaluated architectures such as MobileNetV3 and optimized YOLO (You 

Only Look Once) variants, which utilize depthwise separable convolutions to reduce computational complexity 

(FLOPs) [13], [15]. To accelerate training convergence, a Transfer Learning strategy was employed. Models 

pre-trained on the ImageNet dataset were fine-tuned on the collected hydroponic dataset [23], [24]. Following 

training, the models underwent Post-Training Quantization, converting weights from 32-bit floating-point to 

8-bit integers. This step is essential to reduce the model size and minimize inference latency on resource-

constrained edge devices [6], [21]. 

 

2.5. Performance Evaluation 

The system's performance was evaluated using standard classification metrics: Precision, Recall, F1-

Score, and Accuracy [5], [7]. The F1-Score is calculated using Equation (1): 

F1 = 2 ×
Precision × Recall

Precision + Recall
 (1) 

In addition to classification accuracy, computational efficiency was assessed to validate mobile feasibility. The 

evaluation metrics included Inference Time (latency in milliseconds), Model Size (MB), and Frames Per 

Second (FPS) achieved on a reference Android device [18], [25]. The confusion matrix was also analyzed to 

identify specific misclassifications among visually similar vegetable types. 

 

 

3. RESULTS AND DISCUSSION 

This section presents the experimental performance of the proposed mobile classification system. The 

evaluation focuses on two critical aspects: classification accuracy and on-device computational efficiency. We 

compare two lightweight architectures: MobileNetV3-Large (as a dedicated classifier) and YOLO-Nano (as a 

representative of high-speed one-stage detectors), to determine the optimal configuration for real-time 

hydroponic monitoring. 

 

3.1. Classification Performance 

The models were trained for 50 epochs using the transfer learning strategy described in the 

methodology. Table 1 summarizes the classification metrics on the test dataset across the four target vegetable 

classes. 

 

Table 1. Performance comparison of deep learning architectures 

Model 

Architecture 
Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

MobileNetV3-

Large 
96.8 96.2 96.5 96.4 

YOLO-Nano 93.5 92.8 93.1 93.2 

Difference +3.3 +3.4 +3.4 +3.2 
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As hypothesized, MobileNetV3 achieved superior classification performance with an overall accuracy 

of 96.4%, outperforming YOLO-Nano by 3.2%. This performance advantage is attributed to the architecture's 

depthwise separable convolutions and squeeze-and-excitation modules, which effectively capture fine-grained 

textural differences between visually similar classes (e.g., differentiating young Pak Choy from Mustard 

Greens) [6], [11]. In contrast, while YOLO variants are highly effective for object localization, their feature 

extraction backbone in the "Nano" or "Tiny" configurations is often simplified to prioritize speed, occasionally 

resulting in misclassifications on subtle morphological traits [13], [15]. 

 

3.2. On-Device Computational Efficiency 

To assess feasibility for deployment on constrained hardware, both models were converted to 

TensorFlow Lite (int8 quantized) and benchmarked on a standard Android smartphone (Snapdragon 700-series 

equivalent). Table 2 presents the efficiency metrics. 

 

 
Figure 2. Mobile Application View 

 

Table 2. Efficiency metrics on mobile hardware 

Model Architecture Model Size (MB) Inference Time (ms) FPS (Frames/Sec) 

MobileNetV3-Large 3.5 MB 28.0 ms ~35 FPS 

YOLO-Nano 2.1 MB 18.0 ms ~55 FPS 

 

The results indicate a clear trade-off: YOLO-Nano is significantly faster, achieving approximately 55 

FPS compared to MobileNetV3's 35 FPS. The YOLO architecture's one-stage design allows for extremely 

rapid inference, making it ideal for "scanning" applications where the user moves the camera quickly over a 

hydroponic rack [15], [21]. However, MobileNetV3, despite being slower, maintains a frame rate (35 FPS) that 

is still well above the real-time threshold (typically 24–30 FPS) required for a smooth user experience [12], 

[24]. 

 

3.3. Discussion 

The experimental data confirms that MobileNetV3 provides higher accuracy but is computationally 

heavier than YOLO-Nano, while YOLO-Nano offers superior speed at the cost of slight precision. 

1. Accuracy vs. Speed Trade-off: The 3.2% accuracy gain provided by MobileNetV3 is critical for the 

"Quality Control" use case, where distinguishing specific cultivars or detecting early disease 

symptoms is paramount. This aligns with findings by Al-Gaashani et al. [8] and Lin et al. [19], who 

emphasize that robust feature extraction is necessary to overcome the visual similarity (domain shift) 

in plant datasets. Conversely, for tasks requiring rapid inventory counting across large NFT systems, 

the speed of YOLO (as supported by Wang et al. [13] and Bakir & Gezer [15]) may be preferable. 
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2. Robustness to Environment: Both models maintained acceptable performance under varying 

lighting (LED vs. natural light). However, MobileNetV3 showed greater resilience to complex 

backgrounds typical of home hydroponic setups [10], likely due to its deeper feature representation 

capability compared to the streamlined backbone of YOLO-Nano. 

3. Implications for Edge Deployment: Given that modern smartphones have sufficient processing 

power to run MobileNetV3 at real-time speeds (>30 FPS), we recommend MobileNetV3 as the 

primary engine for this application. The marginal speed gain of YOLO does not justify the loss in 

classification accuracy, especially when precision is required to support agronomic decision-making 

for novice growers [16], [18]. This decision supports the findings of Reda et al. [6], who successfully 

deployed similar classifier architectures in the AgroAId system. 

In conclusion, while YOLO variants offer exciting possibilities for high-speed detection, the MobileNet 

architecture currently offers the most balanced "accuracy-to-resource" ratio for the specific task of fine-grained 

vegetable type classification on mobile devices [11], [14]. 

 

 

4. CONCLUSION 

This study successfully developed and evaluated a real-time classification system for hydroponic 

vegetable types on mobile devices by leveraging lightweight Deep Learning architectures. The comparative 

analysis establishes MobileNetV3 as the superior architecture for this application, achieving a classification 

accuracy of 96.4%, which is 3.2% higher than the YOLO-Nano detector. Although YOLO-Nano demonstrated 

a higher frame rate (~55 FPS), MobileNetV3 maintained a robust performance of ~35 FPS, proving its 

capability to deliver real-time inference without compromising the precision required for agronomic quality 

control. The implementation of transfer learning and quantization effectively mitigated the challenges of 

limited datasets and edge hardware constraints, resulting in a low-latency tool suitable for on-site farm 

monitoring. Consequently, this system offers a practical solution for growers to automate crop identification 

and inventory management. Future research should prioritize expanding the dataset to include a wider variety 

of hydroponic cultivars and integrating the visual classifier with environmental sensor data to create a 

comprehensive multi-modal decision support system for precision agriculture. 
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